Towards Integrating Hybrid DAEs with a High-Index DAE Solver

نویسندگان

  • Nedialko S. Nedialkov
  • Nacim Ramdani
چکیده

J.D. Pryce and N.S. Nedialkov have developed a Taylor series method and a C++ package, Daets, for solving numerically an initial-value problem differential-algebraic equation (DAE) that can be of high index, high order, nonlinear, and fully implicit. Numerical results have shown this method to be efficient and very accurate, and particularly suitable for problems that are of too high an index for present DAE solvers. However, Daets cannot be applied to systems of DAEs that change at points it time, also called hybrid or multi-mode DAEs. This paper presents methods for extending Daets with the capability to integrate hybrid DAEs. Methods for event location and consistent initializations are given. Daets is applied to simulate a model of a parallel robot: a hybrid system of index-3 DAEs with closed-loop control. Key-words: high-index differential-algebraic equations, hybrid systems, structural analysis, consistent initialization This work was supported in part by the Natural Sciences and Engineering Research Council of Canada and INRIA France ∗ Department of Computing Software, McMaster University, Hamilton, Ontario, Canada, L8S 4K1, [email protected] † INRIA Sophia Antipolis – Méditerranée, COPRIN project, [email protected] in ria -0 03 60 99 9, v er si on 1 13 F eb 2 00 9 Vers l’intégration numérique d’équations algébro-différentielles hybrides avec un solver de DAE à grande valeur d’indice Résumé : J.D. Pryce et N.S. Nedialkov ont développé une méthode basée sur le dévelopement en série de Taylor et un package C++, Daets, pour résoudre numériquement le problème de la valeur initiale pour des systèmes algébrodifférentiels (DAE) de grand ordre, non linéaires, totalement implicites et dont la valeur d’indice peut être grande. Les résultats numériques ont montré que cette méthode est efficace, très précise, et particulièrement adaptée aux problèmes dont la valeur d’indice est trop grande pour être résolus par les solveurs actuels. Cependant, Daets ne peut pas être utilisé avec des systèmes de DAE qui changent à des instants donnés, ou plus généralement des DAEs hybrides ou multi-modes. Ce rapport de recherche présente des méthodes pour rendre Daets capable d’intégrer numériquement les DAEs hybrides. Des méthodes pour la détection d’événements et la recherche des nouvelles conditions initiales sont aussi introduites. Daets est utilisé pour simuler le modèle d’un robot parallèle fonctionnant en boucle fermée, écrit sous la forme d’un système DAE hybride de valeur d’indice 3. Mots-clés : équations algébro-différentielles à grande valeur d’indice, systèmes hybrides, analyse structurelle, initialisation in ria -0 03 60 99 9, v er si on 1 13 F eb 2 00 9 Integrating Hybrid DAEs 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Characterization on Index of DAEs in Hybrid Analysis for General Circuits

Modern modeling approaches for circuit simulation such as the modified nodal analysis (MNA) lead to differential-algebraic equations (DAEs). The index of a DAE is a measure of the degree of numerical difficulty. In general, the higher the index is, the more difficult it is to solve the DAE. The index of DAEs arising from MNA has been characterized by the network structure. In this paper, we con...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Index Reduction for Differential-Algebraic Equations by Substitution Method

Differential-algebraic equations (DAEs) naturally arise in many applications, but present numerical and analytical difficulties. The index of a DAE is a measure of the degree of numerical difficulty. In general, the higher the index is, the more difficult it is to solve the DAE. Therefore, it is desirable to transform the original DAE into an equivalent DAE with lower index. In this paper, we p...

متن کامل

Consistent Initial Conditions for Unstructured Higher Index DAEs: A Computational Study

Differential algebraic equations (DAEs) are implicit systems of ordinary differential equations, F (x′, x, t) = 0, for which the Jacobian Fx′ is always singular. DAEs arise in many applications. Significant progress has been made in developing numerical methods for solving DAEs. Determination of consistent initial conditions remains a difficult problem especially for large higher index DAEs. Th...

متن کامل

Numerical Analysis of DAEs from Coupled Circuit and Semiconductor Simulation

In this work we are interested in the numerical solution of a coupled model of differential algebraic equations (DAEs) and partial differential equations (PDEs). The DAEs describe the behavior of an electrical circuit that contains semiconductor devices and the partial differential equations constitute drift-diffusion equations modeling the semiconductor devices in the circuit. After space disc...

متن کامل

Hopf Bifurcation and Stability in DAEs

A simple comparison of the areas of the sciences in which DAEs are involved with those in which examples of Hopf bifurcation in ODEs arise (see Thompson and Stewart (1986) and the references therein) reveals a considerable overlap and suggests that an appropriate variant of the Hopf bifurcation theorem should be available in the DAE setting. In this chapter, we show that, indeed, a generalizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009